

Nodejs	with	Koa2

	

	

	

	

	

Chapter	1	Introduction

Chapter	2	Why	Should	you	Learn	Nodejs	With	Koa2

Chapter	3	Why	is	it	Difficult	to	learn	Nodejs

Chapter	4	What	we	are	going	to	do	about	constant	changes	happening	in
Nodejs

Chapter	5	What	are	we	going	to	Learn

Chapter	6	Lets	Start	Coding

Chapter	7	Got	the	Idea	Start	the	project	very	basic

Chapter	8	Go	Ahead	and	add	Real	Functionality

Chapter	9	Hosting	on	Windows	2008	R2	IIS

Chapter	10	Errors	you	may	face

Chapter	11	Downloading	Entire	Project	and	using	it

Chapter	12	About	us

	

Introduction
I	assume	you	know	JavaScript,	knows	web	development,	knows	about	node.js,	tried	it,
have	idea	about	Angularjs,	Reactjs.

If	you	are	trying	to	learn	node.js,	this	book	will	help.

I	will	make	your	nodejs	learning	very	easy,	after	reading	this	book,	you	will	be	able	to
make	entire	websites	with	nodejs	using	koa	framework.

When	I	tried	to	learn	node	with	koa,	not	much	help	is	available	online,	there	were
absolutely	not	enough	tutorials	to	help	you	learn,	even	to	this	date	when	iam	writing	this
book,	hardly	any	help	will	be	there	to	help	you	build	entire	website	from	scratch,	so	iam
writing	this	eBook,	to	help	you	learn	faster.

Node	with	Koa	is	very	easy,	just	like	Meteorjs,	if	you	know	Meteorjs,	you	will	know	how
coding	is	breeze,	in	Meteorjs,	but	then	why	not	code	in	Meteorjs	instead	of	node.

Although	coding	is	breeze	in	Meteorjs,	it	is	only	for	advance	Linux	user,	hosting	is	pain,
and	you	need	to	have	at	least	intermediate	levels	of	Linux	skills	to	host	it	on	VPS	or
dedicated	server,	there	is	no	shared	hosting	service	for	meteor	at	the	time	of	writing	this
eBook.

Meteor	looked	so	promising	and	so	easy,	that	I	coded	entire	dating	website	in	Meteorjs,
and	also	hosted	it,	even	though	my	hosting	company	gave	me	full	support,	did	all	the
heavy	lifting,	still	frequently	website	used	to	crash,	and	I	was	not	sure what 	was	the
reason.

It	does	require	Linux	admin	skills,	Nginx	skills	and	Docker	skills.

If	you	can	make	websites	on	nodejs,	they	can	be	hosted	on	windows	platform,	websites
are	cool	in	nodejs,	they	are	fast	and	real-time.

Future	is	micro	services,	software	as	a	service;	you	will	be	developing	software	as	a
service	not	like	in	the	past	where	you	develop	entire	monolithic	application	with	all	the
features	in	it,	you	will	be	building	small	service	apps,	and	will	be	integrating	other	apps
with	it	made	by	you	or	some	other	person.

Money	is	in	micro	service,	you	can	develop	a	micro	service	app	and	upload	it	on	cloud,
and	people	will	use	your	service	and	pay	you	as	per	use.	For	example	you	can	develop	an
algorithm	which	can	detect	diabetes	provided	with	some	specific	parameters,	and	people
will	pay	you	for	using	your	algorithm,	lot	of	services	like	this	are	available	on	cloud.

Why	should	you	learn	nodejs	with	koa
	

Traditional	approach	of	software	development	was	monolithic	approach,	where	we	have
all	the	features	in	one	application.

Modern	approach	is	modular	approach;	this	is	the	approach	node.js	uses	to	build
software’s.

Nodejs	is	cool,	websites	are	fast	and	real-time,	even	though	you	can	create	websites	with
nodejs	and	express,	but	coding	is	little	painful,	so	many	call	backs,	it’s	like	call	back
jungle,	even	though	express	framework	now	has	generator	function,	but	it	is	good	to	use
framework	which	is	futuristic,	koa	is	futuristic.

Future	is	micro	services,	and	they	are	extremely	easy	to	code	in	nodejs,	bulk	of	examples
and	sample	code	will	be	available	of	nodejs,	micro	services	are	mostly	event	driven,
nodejs	is	also	event	driven.

Nodejs	and	python	are	the	important	languages	to	learn,	lot	of	work	is	going	on	these	two
languages,	you	will	get	lot	of	source	code	for	free,	and	you	just	need	to	know	how	to	use
it.

Iam	asp.net	mvc	C#	developer,	but	I	learned	python	and	nodejs,	since	I	am	also	learning
machine	learning,	lot	of	example	code	for	machine	learning	is	in	python	and	nodejs.

I	also	learned	math’s	to	be	able	to	code	for	machine	learning	and	artificial	intelligence,
artificial	intelligence	will	be	the	future,	so	be	prepare	for	it.

Microsoft	is	lagging	way	behind;	open	source	community	is	thriving	right	now.

Why	it	was	hard	to	learn	nodejs
	

We	came	with	background	with	class	oriented	programming,	from	C#,	Java,	C,	c++.

JavaScript	is	functional	programming,	and	we	never	took	JavaScript	seriously,	we	just
used	it	for	website	validation.

Why	you	had	hard	time	learning	nodejs,	nodejs	is	rapidly	evolving	technology,	framework
changes	happens	almost	every	day,	the	code	you	might	have	got	searching	Google	is	old
and	absolute	and	no	longer	works,	always	check	the	date	when	that	article	was	written,	it
was	working	then,	but	not	working	now,	you	were	typing	the	same	example	code,	but
when	you	run	it,	it	doesn’t	work,	it	is	most	likely	that	example	code	is	absolute.

Some	examples	on	the	internet	are	using	nodejs	with	Angularjs	or	Reactjs,	that	is	making
it	more	problematic	to	learn,	you	got	to	learn	additional	Angularjs	framework	and	Reactjs
framework	and	that	confuses	you,	where	to	start	what	to	do,	it	totally	confuses	you.

There	is	no	need	to	learn	Angularjs,	Reactjs,	for	building	apps	with	nodejs,	nodejs	with
koa	framework	has	everything	required	to	make	a	full	blown	web	app.

What	these	Angularjs,	Reactjs	frameworks	does,	they	add	extra	layer	of	complexity	on	the
app,	and	you	waste	your	time	to	figure	it	out,	what	happened,	from	where	this	error	is
coming,	this	is	where	I	wasted	my	time,	when	I	was	learning.

Angularjs,	and	Reactjs	framework,	updates	and	change	frequently,	so	when	you	try	to
implement	there	code,	it	doesn’t	work,	further	increasing	your	frustration.

There	tutorial	nodejs	with	Angularjs	are	written	by	geeks	who	have	no	life,	but	to
experiment	and	do	some	outstanding	things	in	coding,	and	we	refer	these	tutorials	for
basic	learning	and	gets	stomped.

Books	available	on	the	internet	are	old,	outdated	technology,	check	when	it	was	updated,
nodejs	is	changing	very	rapidly,	if	you	buy	these	books	with	outdated	techniques,	it	will
add	to	your	frustration.

Lot	of	Modules	are	interdependent	on	each	other,	if	some	modules	get	upgraded	and	you
update	it,	it	may	make	your	code	error	prone,	since	the	modules	which	were	dependent	on
that	module	are	not	updated	or	changed	completely,	this	is	the	real	cause	of	frustration.

Each	module	is	independently	developed	by	geeks	and	they	are	dependent	on	other
modules	to	function.

When	I	tried	to	use	koa	with	generator	function,	I	faced	lot	of	problems,	because	some
modules	were	abandoned	by	their	creators	and	were	no	longer	working,	so	I	used	KOA2
which	has	functionality	like	async	and	await	much	like	C	#	code;	it	is	implementing
ECMASCRIPT	6	features.

I	will	also	explain	problems	I	faced	and	reasons	behind	and	what	I	did	to	fix	it.

Note:	If	you	are	totally	new	then	you	have	to	look	for	,	what	packages	and	package
versions		you	are	using	in	project,	don’t	get	confuse	in	packages,	there	are	so	many

packages	to	use,

Example

For	Database	Connection:
co-monk	easy,	but	mongoose	is	also	good	for	creating	schema	and	predefine	functions	For
Mongodb	database	connection	there	is	Monk,	Co-Monk	And	mongoose:

I	used	monk

	

For	parsing	co-body	and	koa-bodyparser:
I	found	koa-bodyparser	easy	you	have	to	call	just	app.user(bodyparser);	for	parsing	data
from	pages	and	using	ctx.request.body	u	will	get	data	from	forms,	but	in	co-body	you
have	to	mention	parse(this.body)	for	each	route

For	rendering	koa-swig,	koa-view,	co-views:

I	found	koa-views	better,	just	app.user(Views(‘foldername’,{map:{html:swig}}));

And	you	can	render	pages	by	calling	this.render(‘pagename’);													

	

For	routing	koa-route,	koa-router:
Found	koa-route	better	but	it	has	some	limitation	but	I	didn’t	found	those	yet

For	templating,	too	many	options	are	available	swig,	handlebars,	underscore	and	many
more

Found	swig	better	and	easy	for	me	because	you	don’t	have	to	do	extra	coding	for	it
{%block%}	is	good	like	handlebars	you	can	call	{{datafromRoute}}	and	bind	data	in	to
html	page{%if%}{%endif%}	are	easy	to	understand.

So	choose	one	wisely	and	stick	to	it,	after	trying	so	many	examples	and	tutorial	finally	I
found	some	packages	which	are	comfortable	to	work	for	me.

At	starting	I	was	too	much	confused	between	these	packages	and	was	unable	to	decide
what	to	use.

For	that	I	created	separate	projects	for	experimenting,	which	package	is	comfortable	for
me,	and	finally	decided	for	my	project,	you	might	not	agree	with	it	you	can	use	other
packages.

This	is	where	problem	lies,	which	package	to	use	and	which	to	not,	you	will	get	some
examples	which	use	different	packages	to	do	some	task,	but	may	not	work	well	together
with	alternate	packages,	this	is	where	you	will	be	wasting	time,	this	is	where	you	will	get
frustrated,	that’s	why	I	have	mentioned	which	packages	iam	using.

	

What	are	you	going	to	do,	about	constant	changes
happening	in	nodejs	and	koa	framework
	

This	eBook	may	get	absolute	within	6	months,	that’s	why	I	have	created	a	website,	which
this	book	purchaser	will	get	free	access

Access	code	is	“Married	2	Node”	without	double	quotes.

After	using	this	code	you	will	be	able	to	register	on	our	website,	where	you	will	get	free
source	code,	and	the	questions	about	the	code	mentioned	will	be	answered.

http://nodecode.info/

Some	of	the	code	may	get	absolute,	but	the	latest	code	will	be	written	on	the	website,	we
are	developing	many	websites	on	nodejs	technology,	and	it	will	be	available	free	on	the
website.

In	kindle	edition,	code	written	may	not	be	seen	clearly,	so	I	will	urge	to	visit	my	website
and	see	the	code.

What	are	you	going	to	learn?
	
In	this	eBook,	I	will	give	you	complete	source	code	for	website	with	basic	features,	login,
registration,	sessions,	edit,	and	delete	functions.

I	will	also	explain	how	to	do	it	and	explain	the	code,	if	you	get	errors	you	can	post	it	on
our	website	and	we	will	solve	it.

These	are	the	basic	things	for	every	web	app,	once	you	are	able	to	code	it,	you	can	create
any	web	app.

We	have	team	of	programmers	who	are	developing	next	generation	web	apps,	we	will	also
be	posting	source	code	and	discussing	about	it.

We	are	using

Node	v4.4.7

Mongodb	v3.2.3

Download	and	install	node	from	https://nodejs.org/en/		according	to	your	operating	system

Download	and	install	Mongodb	from

https://www.mongodb.com/download-center?jmp=nav#community

https://nodejs.org/en/
https://www.mongodb.com/download-center?jmp=nav#community

Let’s	Start	Coding
	

Iam	doing	a		simple	project	with	login,	registration,	edit	profile,	delete	profile	and	view
profile.		With	bootstrap	3	css	using	bootswatch	theme.	We	are	using	simple	html	pages
and	for	templating	swig.

Note:	If	you	are	totally	new	then	you	have	to	look	for	,	what	packages	and	package
versions		you	are	using	in	project,	don’t	get	confuse	in	packages,	there	are	so	many
packages	to	use,

Iam	using	Webstorm	for	developing	web	app

You	can	download	it	from	here,

https://www.jetbrains.com/webstorm/download/

try	trial	version,	and	use	its	all	features

Create	new	empty	project	in	Webstorm	with	name	loginRegitrationPract

Open	terminal	window	at	the	bottom

Type	following	commands

npm	init

This	command	is	to	create	package.json	file	for	project

Now	this	command	will	need	some	inserts	and	enters

Name:	(loginRegitrationPract)loginregistrationpract	//	if	you	want	to	change	then	type	the
name	and	then	press	enter

Version:(1.0.0)0.0.1	//	to	change	version	type	and	enter

Description:	koa	v2	simple	login	registration	with	google	project

Main:(index.js)app.js

Scripts:		//note:	just	press	enter	if	you	don’t	want	to	fill	any	thing

And	at	last	enter	your	package.json	is	ready

Now	in	project	window	you	can	see	package.json	file	is	created

{

		“name”:	”	loginregistrationpract	“,

		“version”:	“0.0.1”,

		“description”:	”	koa	v2	simple	login	registration	with	google	project	“,

		“main”:	“app.js”,

		“scripts”:	{

“test”:	“echo	\“Error:	no	test	specified\”	&&	exit	1”

https://www.jetbrains.com/webstorm/download/

		},

		“keywords”:	[

“koa”,

“node”,

“monk”

],

		“author”:	“Priya	Patil”,

		“license”:	“ISC”

}

This	is	how	you	file	will	look

	

Packages	you	need
koa	as	a	framework,
monk	and	co-monk	for	Mongodb	connection,	co-monk	for	wrapper
koa-route	for	routing
koa-static	to	parse	static	page
koa-views	to	render	views
swig	for	templating
koa-convert,	koa-generic-session	for	sessions
koa-bodyparser	to	parse	page	data
passport-local,	koa-passport,	passport-google-auth	for	login	and	registration	and
authentication
co	for	wrapping	generator	function	because	koa	v2	doesn’t		support	for	it

	

now	in	terminal	window	type	command

>npm	install	koa@next	—save

to	install	latest	koa	version	2,	‘—save	‘	will	add	koa	version	details	to	package.json		file
under	dependencies.

Open	package.json	and	you	will	see

“dependencies”:	{
		“koa”:	“^2.0.0-alpha.4”,

}

//note:	this	the	current	koa	version	but	not	stable	you	can	get	all	the	latest	packages	using
@next	after	packagename	but	are	not	stable	versions

And	in	project	solution	window	new	folder	is	added	‘node_modules’	where	all	project
dependencies	are	installed

project	structure	will	be	like	this
								lib

db.js	//	to	save	database	connection	which	we	can	access	in	other	pages

								public

css,imges,etc..	//	save	all	css	files	images	logos	here

								routes

homeRoutes.js	//	write	down	middleware	module.export	function	for	our
routes

								views			//all	html	pages	here

home.html
login.html
layout.html
app.js		//main	application	file\
auth.js	//	authentication	login	registration	code	here
babel.app.js		//	to	work	async	and	await	we	have	to	use
package.json

	

Ok	now	what	is	this	babel.app.js	,	for	running	async	await	functionality	from	koa	v2	we
have	to	run	our	project	through	babel

So	we	also	need	babel.js

Learn	more	about	it	from	here

https://babeljs.io/

	

https://babeljs.io/

package.json
“dependencies”:	{
		“babel-core”:	“^6.13.2”,
		“babel-polyfill”:	“^6.9.1”,
		“babel-preset-es2015”:	“^6.13.2”,
		“babel-preset-stage-0”:	“^6.5.0”,	
		“co-monk”:	“^1.0.0”,
		“koa”:	“^2.0.0-alpha.4”,
		“koa-bodyparser”:	“^3.2.0”,
		“koa-convert”:	“^1.2.0”,
		“koa-generic-session”:	“^1.11.3”,
		“koa-passport”:	“^2.2.2”,
		“koa-route”:	“^3.1.0”,
		“koa-static”:	“^3.0.0”,
		“koa-views”:	“^5.0.2”,
		“monk”:	“^3.1.1”,
		“passport-google-auth”:	“^1.0.1”,
		“passport-local”:	“^1.0.0”,
		“path”:	“^0.12.7”,
		“swig”:	“^1.4.2”
}

	

You	have	to	install	all	these	dependencies	with	command

npm	install	<dependancyname>	—save

As	per	our	project	structure	create	folders
lib,public,routes,views

And	create	app.js	file	under	your	main	project	directory.

	

Got	the	idea,	now	start	your	project	?
	

A	basic	Hello	world	program	to	make	you	happy,	that	your	code	actually	works,	Hurray

As	per	our	project	structure	create	folders	lib,	public,	routes,	views	and	create	app.js	file
under	your	main	project	directory.

First	we	will	create	simple	app.js	to	run	without	any	view	or	template.

./app.js
//create	application	object

var	koa	=	require(‘koa’);

var	app	=	new	koa();

app.use(function	(ctx){

ctx.body	=	‘Hello	World’

});

	

//this	will	listen	your	app	on	http://localhost:3000

app.listen(3000);

console.log(‘App	listening	on	port	3000’);

	

simple	code	to	start	your	application

now	in	your	terminal	window	type	command

	

>node	app

note:	for	koa	v1	we	type	node	—harmony	app.js,	but	in	v2	you	don’t	have	to	use	–
harmony.

This	will	start	your	project	and	will	show	the	message	in	terminal

App	listening	on	port	3000

Now	in	a	browser	type	localhost:3000	and	you	will	see	a	hello	word

Congrats,	you	have	made	your	program	work

	

Go	Ahead	add	Some	Real	Code	and	Build	your	Application
	

Now	you	have	been	motivated,	your	hello	world	program	worked,	now	we	are	going	to
add	more	functionality	to	our	app.

Create	db.js	in	your	lib	folder

./lib/db.js
var	monk	=	require(“monk”);	//for	mongodb	connection
var	wrap	=	require(“co-monk”);	//	co-monk	for	wrapper
var	db	=	monk(“localhost/loginReg”);	//connection	to	db	loginReg

var	users	=	wrap(db.get(“users”));

//	we	are	using	users	collection	to	save	users	details
	

//this	will	make	users	available	in	other	pages
module.exports.users	=	users;

	

We	are	using	monk	and	co-monk	modules	for	database	connections;	we	are	using
Mongodb	in	backend

We	are	exporting	users	to	other	modules	so	from	any	page	it	could	be	worked	on.

	

./babel.app.js
//notes:	it	is	compulsory	to	use	babel	or	bluebird	to	run	our	project	otherwise	you	will	get
error	//running	async	await	functionality

require(“babel-core/register”)({
				“presets”:	[
								“es2015”,
								“stage-0”
]
});
require(“babel-polyfill”);
require(‘./app.js’);

	

	

Now	add	the	below	code	in	App.js

./app.js

var	koa	=	require(“koa”);
var	app	=	new	koa();
var	route	=	require(“koa-route”);
var	serve	=	require(“koa-static”);
var	path	=	require(“path”);
var	co	=	require(“co”);

var	views=	require(“koa-views”);//	to	render	html	swig	template

app.use(views(‘views’,	{map:{html:‘swig’}}));		//	this	will	get	our	html	swig	templates
from	views	folder

//	trust	proxy
app.proxy	=	true;

//	body	parser
const	bodyParser	=	require(‘koa-bodyparser’);
app.use(bodyParser());

app.use(serve(__dirname	+	“/public”));	

//routes*/
var	homeRoutes	=	require(“./routes/homeRoutes.js”);	//getting	js	in	variable

app.use(route.get(“/”,	homeRoutes.showHome));//calling	exported	function	

app.listen(3000);
console.log(‘Listening	on	http://localhost:3000’);

	
Now	add	the	code	in	homeRoutes.js

./routes/homeRoutes.js
//async	function	to	render	home.html	page

module.exports.showHome	=	async	(ctx)	=>	{

await	ctx.render(‘home’);
}

Now	to	run	this	app	we	have	to	use	new	command	window	because	other	is	running	by
babel

>node	—harmony	babel.app.js

and	run

this	will	run	our	project

copy	this	command	and	paste	it	in	package.json	under	scripts

“scripts”:	{
		“start”:	“node	—harmony	babel.app.js”,
		“test”:	“echo	\“Error:	no	test	specified\”	&&	exit	1”
}

Now	in	terminal	type	command

>npm	start

And	your	project	is	started.	Before	starting	our	project	we	have	to	create	our	view	pages,	I
am	using	bootswatch	for	bootstrap	css	themes

https://bootswatch.com/

https://bootswatch.com/

./views/layout.html
<!DOCTYPE	html>
<html	lang=“en”>
<head>
				<meta	charset=“UTF-8”>
				<title>{%block	title%}Title	not	set{%endblock%}</title>
				<link	rel=“stylesheet”	href=”/bootstrap.css”>
				<link	rel=“stylesheet”	href=”/costum.css”>

				<!—	HTML5	shim	and	Respond.js	for	IE8	support	of	HTML5	elements	and	media
queries	—>
				<!—	WARNING:	Respond.js	doesn’t	work	if	you	view	the	page	via	file://	—>
				<!—[if	lt	IE	9]>
				<script	src=“https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js”></script>
				<script	src=“https://oss.maxcdn.com/respond/1.4.2/respond.min.js”></script>
				<![endif]—>
</head>
<body>

<!—navbar	for	navigation	we	are	already	assigning	links	for	login	and	logout	it	might
give	error	so	comment	the	code	if	error	—>

<nav	class=“navbar	navbar-default”>
				<div	class=“container-fluid”>
								<div	class=“navbar-header”>
												<button	type=“button”	class=“navbar-toggle	collapsed”	data-toggle=“collapse”
																				data-target=”#bs-example-navbar-collapse-1”>
																Toggle	navigation
																
																
																
												</button>
												Koa	test	application
								</div>

								<div	class=“collapse	navbar-collapse”	id=“bs-example-navbar-collapse-1”>
												<ul	class=“nav	navbar-nav”>
																Home	
												

<!—if	you	got	error	comment	this	block	—>
												<ul	class=“nav	navbar-nav	navbar-right”>
																{%if	user	===	null	%}
																Log	In

																{%else%}
																!hi	{{user.username}}
																Log	Out
																{%endif%}
												
								</div>
				</div>
</nav>
<div	class=“container”>
				{%block	content%}
				content	not	set
				{%endblock%}

				<footer>
								<div	class=“row”>
												<div	class=“col-lg-12”>
																<p>Made	by	Websol	Software	Pvt.	Ltd..
																</p>
												</div>
								</div>
				</footer>
</div>

</body>
</html>

Now	Add	code	in	home.html

./views/home.html
//	extending	layout.html	this	will	add	navbar,	footer	and	other	css	used	layout.html

{%	extends	‘layout.html’	%}
{%block	title%}	Login	Registration	Example	{%endblock%}

{%block	content%}
<div	class=“jumbotron”>
				<h1>Welcome</h1>
				<h3>Login	Registration	Example</h3>
</div>
{%endblock%}

	

Now	run	your	project,	go	to	browser	and	you	will	see	a	home	page	with	bootstrap	css

Now	we	will	see	simple	login	and	registration	with	koa-passport,	passport-local	and
passport-google-auth

	

We	are	going	to	use	google	authentication	system	for	login	and	registration,	this	will
prevent	fake	users	or	users	with	invalid	email	ids	to	register

You	can	create	google	auth	key	from	here

https://cloud.google.com/

tutorials	for	creating	google	auth	key	are	in	plenty,	you	can	refer	them,	creating	google
auth	key	is	beyond	the	scope	of	this	eBook,	do	comment	or	request,	we	may	add	that
tutorial	in	our	eBook,	this	eBook	will	be	constantly	updated	and	new	things	will	be	added
to	it.

Although	Basic	tutorial	of	google	authentication	is	included

Create	your	google	console	project	apikey	and	secret

for	http://localhost:3000

	

Create	./auth.js

Add	this	code	in	your	auth.js

https://cloud.google.com/
http://localhost:3000

./auth.js
var	passport	=	require(‘koa-passport’);
var	db	=	require(“./lib/db.js”);
passport.serializeUser(function(user,	done)	{
				done(null,	user._id);
});
passport.deserializeUser(function(id,	done)	{
				db.users.findOne({_id:	id},	function(err,	user)	{
								done(err,	user);
				});
});
var	LocalStrategy	=	require(‘passport-local’).Strategy;
passport.use(new	LocalStrategy(function(username,	password,	done)	{
			db.users.findOne({username:username},	function	(err,user)	{
								if(err){
												done(err)
								}

if(!user)	{
												done(null,	user)
								}else{
												if(username	===	user.username	&&	password	===	user.password){
																done(null,user);
												}else{
																done(null,	false);
												}
								}
				});
}));
const	GoogleStrategy	=	require(‘passport-google-auth’).Strategy;
passport.use(new	GoogleStrategy({
								clientId:	‘your-client-id’,
								clientSecret:’your-client-secret’,
								callbackURL:	‘http://localhost:’	+	(process.env.PORT	||	3000)	+
‘/auth/google/callback’
				},
				function	(token,	tokenSecret,	profile,	done)	{

//we	are	using	co	function	to	use	generator	function	yield	functionality

								co(function	*()	{									

var	user	=		yield	db.users.findOne({google_id:	profile.id});
												if(!user){

//fetch	google	profile	and	save	if	dose	not	exists	

																user	={
																				name:profile.displayName,
																				email:profile.emails[0].value,
																				username:profile.emails[0].value,
																				provider:‘google’,
																				password:‘1234’,
																				google_id:profile.id,
																				imgurl:profile.image.url,
																				gplusurl:profile.url,
																				gender:profile.gender,
																				createdAt:new	Date,
																				bdate:new	Date,
																				about:‘hi	there’,
																				updatedAt:new	Date
																};
																yield	db.users.insert(user);
												}
												
												done(null,user)
								}).catch();
				}
));

module.exports	=	passport;	//	don’t	forget	to	export

What	is	this	auth.js	file	is	for?

This	file	is	for	login	registration	code.	We	are	using	koa-passport	and	passport-local	for
simple	login	and	authentication.

var	LocalStrategy	=	require(‘passport-local’).Strategy;

This	is	the	local	strategy	where	we	are	using	passport-local.	In	this	strategy	we	are	getting
data	from	login	page	username,	password	and	sending	result.	For	that	first	we	find	record
for	that	username	if	found	then	compare	with	parameter	username	and	password	if	true
then	return	done(null,user);	null	for	no	errors	and	user	to	create	session,	and	if	not	found
or	not	match	then	return	done(err,false);	err	for	any	errors	found	and	false	for	no	data
found.

Next	we	are	using	passport-google-auth	for	google	strategy	to	register	by	google	account,
So	that	we	can	make	registration	process	fast	instead	of	filling	lengthy	forms.	Now	in
google	strategy	we	need	ouath	credentials	for	creating	google	registration.

For	that	you	have	to	create	a	project	for	localhost:3000	in
https://console.developers.google.com	and	create	api	Key	with	http://localhost:3000/	and	Client	ID
for	Web	application	with	http://localhost:3000	and	http://localhost:3000/auth/google/callback	and	use	this	credentials
in

clientId:	‘your-client-id’,

https://console.developers.google.com
http://localhost:3000/
http://localhost:3000
http://localhost:3000/auth/google/callback

clientSecret:’your-client-secret’,
callbackURL:	‘http://localhost:’	+	(process.env.PORT	||	3000)	+
‘/auth/google/callback’

Now	if	done	with	this	we	have	to	write	call	back	function	for	this	where	you	have	pass
parameters

function	(token,	tokenSecret,	profile,	done)

Like	this,in	this	function	we	are	using	 co() 	wrapper	to	write	*	generator	function.

To	prevent	duplicate	registration,	in	this	function	we	check	if	googleid	already	exists

var	user	=		yield	db.users.findOne({google_id:	profile.id});

If	we	don’t	get	any	result	then	this	data	will	be	inserted	in	darabase	and	user	account	is
created

if(!user){

//fetch	google	profile	and	save	if	dose	not	exists	
																user	={
																				name:profile.displayName,
																				email:profile.emails[0].value,
																				username:profile.emails[0].value,
																				provider:‘google’,
																				password:‘1234’,
																				google_id:profile.id,
																				imgurl:profile.image.url,
																				gplusurl:profile.url,
																				gender:profile.gender,
																				createdAt:new	Date,
																				bdate:new	Date,
																				about:‘hi	there’,
																				updatedAt:new	Date
																};
																yield	db.users.insert(user);
												}
												
												done(null,user)

And	after	insert	we	return	the	user	with	done	(null,user)	for	creating	session.	Here	we	are
retrieving	user	data	from	his	google	account	profile	like

name:	profile.displayName,
email:	profile.emails[0].value,
username:	profile.emails[0].value,
provider:	‘google’,
google_id:	profile.id,
imgurl:	profile.image.url,

gplusurl:	profile.url,
gender:	profile.gender,
	

,	name,	email,	googleid,	gender,	g+	url	and	image	url,	and	also	adding	some	additional
fields	to	our	user	profile	

password:‘1234’,	
createdAt:new	Date,
bdate:new	Date,
about:‘hi	there’,
updatedAt:new	Date

We	are	going	to	keep	our	default	password	‘1234’	for	login.

Change	your	./routes/homeRoutes.js	like	this

./routes/homeRoutes.js
var	db	=	require(“./../lib/db.js”);

var	user	=	null;

module.exports.showHome	=	async	(ctx)	=>	{
				if	(ctx.isAuthenticated())	{
								//console.log(ctx.passport.user);
								user	=	await	ctx.passport.user;
				}
				await	ctx.render(‘home’,	{user:	user});
}

	

Now	we	are	making	some	changes	in	homeRoutes.js

if	(ctx.isAuthenticated())	{
								user	=	await	ctx.passport.user;
																		}
here	we	are	checking	if	user	is	already	logged	in	then	getting	user	data	from	passport
session	in	already	declared	variable	user

var	user	=	null;
and	passing	this	user	data	to	home	view	with	await	render

await	ctx.render(‘home’,	{user:	user});

By	this	if	there	is	data	then	it	will	be	shown	on	view	page	else	it	is	null.	We	have	already
written	a	code	in	our	html	layout	page

{%if	user	===	null	%}
Log	In
{%else%}
!hi	{{user.username}}
Log	Out
{%endif%}

This	means	if	user	is	logged	in	then	it	will	show	else	links	username	to	go	to	/members
page	and	Log	Out	to	logout.	This	will	navigate	to	our	members	get	route.

Create	login.html	and	members.html

./views/login.html
{%	extends	‘layout.html’	%}

{%	block	title	%}Login{%	endblock	%}

{%	block	content	%}
<div	class=“row”>
				<div	class=“col-lg-6	“>
								<div	class=“jumbotron”>
												<h3>Login	to	your	account</h3>
												<hr>
												<form	action=”/login”	method=“post”	class=“form-horizontal”>
																<div	class=“form-group”>
																				<label	for=“username”	class=“col-lg-2	control-label”>Email	:</label>
																				<div	class=“col-lg-10”>
																								<input	type=“email”	class=“form-control”	id=“username”
name=“username”
																															placeholder=“something@gmail.com”>
																				</div>
																</div>
																<div	class=“form-group”>
																				<label	for=“password”	class=“col-lg-2	control-label”>Password:</label>
																				<div	class=“col-lg-10”>
																								<input	type=“password”	class=“form-control”	id=“password”
name=“password”>
																				</div>
																</div>
																<div	class=“form-group”>
																				<div	class=“col-lg-10	col-lg-offset-2”>
																								<input	type=“submit”	value=“Log	In”	class=“btn	btn-primary”>
																				</div>
																</div>
												</form>
												<p>Default	Password	1234	</p>
								</div>
				</div>
				<div	class=“col-lg-6	“>
								<p	class=“lead	text-center”>
												Or
								</p>
								<p	class=“text-center	center-block	jumbotron”>
												Sign	in	with	Google
								</p>
				</div>
</div>

{%	endblock	%}

	

This	is	a	login	page	with	login	form	with	post	method	and	action	‘/login’

<form	action=”/login”	method=“post”	class=“form-horizontal”>

This	means	this	form	data	will	be	submitted	to route.post(‘/login’ 	method	which	we	are
going	to	write	in	our	app.js	file.	There	are	two	input	fields	one	is	for	username	and	other
for	password.	Names	of	these	input	fields	are	important	it	should	be	same	as	we	are
writing	in	parameters	of	the	local	strategy	in	our	auth.js	file.

Sign	in	with	Google

There	is	also	a	link	to	google	registration,	login	route,	which	is	used	to	register	and	login
both

	

./views/members.html
{%	extends	‘layout.html’	%}

{%block	title%}	Authenticated	Members	Area	{%endblock%}

{%block	content%}
<div	class=“jumbotron”>

				<h3>Welcome	{{user.username}}</h3>
<!—note:	these	all	functionality	we	are	going	to	cover	in	this	project	so	for	future	purpose
keep	this	links	—>
				<p>Edit	Profile</p>
				<p>View	Profile</p>
				<p>Delete	Me</p>
</div>

{%endblock%}

	

This	is	our	members.html	file	which	we	are	going	to	user	to	redirect	after	login	is
successful.	Here	we	are	taking	username	name	of	logged	in	user

{{user.username}}

Like	this,	this	user	we	will	get	from	passport.user.	Remaining	links	are	of	no	use	because
we	have	not	created	route	or	pages	for	that,	but	keep	them	as	we	develop	our	project	this	is
going	to	be	in	use.	If	getting	error	then	comment	it	for	the	time	being.

Now	in	./app.js	we	have	to	add	some	routes	and	declarations	for	login	registration.

./app.js
var	koa	=	require(“koa”);
var	app	=	new	koa();

var	route	=	require(“koa-route”);
var	serve	=	require(“koa-static”);
var	path	=	require(“path”);
var	co	=	require(“co”);
var	views=	require(“koa-views”);

app.use(views(‘views’,	{map:{html:‘swig’}}));

//	trust	proxy
app.proxy	=	true;

//	sessions
const	convert	=	require(‘koa-convert’);
const	session	=	require(‘koa-generic-session’);
app.keys	=	[‘your-session-secret’,	‘another-session-secret’];
app.use(convert(session()));

//	body	parser
const	bodyParser	=	require(‘koa-bodyparser’);
app.use(bodyParser());

app.use(serve(__dirname	+	“/public”));

//	authentication
require(‘./auth’);
var	passport	=	require(‘koa-passport’);
app.use(passport.initialize());
app.use(passport.session());

//routes*/
var	homeRoutes	=	require(“./routes/homeRoutes.js”);
var	loginRoutes	=	require(“./routes/loginRoutes.js”);
var	membersRoutes	=	require(“./routes/membersRoutes.js”);

app.use(route.get(“/”,	homeRoutes.showHome));
app.use(route.get(‘/login’,loginRoutes.showLogin));
app.use(route.get(‘/logout’,loginRoutes.logout));

app.use(route.get(‘/members’,membersRoutes.showMem));

//	POST	/login
app.use(route.post(‘/login’,
				passport.authenticate(‘local’,	{
								successRedirect:	‘/members’,
								failureRedirect:	‘/login?err=local’
				})
));
	

app.use(route.get(‘/auth/google’,
				passport.authenticate(‘google’,{session:false,	scope:[‘email’,‘profile’],	accessType:
‘offline’,	approvalPrompt:	‘force’}
)));

app.use(route.get(‘/auth/google/callback’,
				passport.authenticate(‘google’,	{
								successRedirect:	‘/members’,
								failureRedirect:	‘/login?err=google’
				})
));

app.listen(3000);
console.log(‘Listening	on	http://localhost:3000’);

	

In	the	below	code	we	are	adding	session	functionalities	to	our	webapp

//	sessions
const	convert	=	require(‘koa-convert’);
const	session	=	require(‘koa-generic-session’);
app.keys	=	[‘your-session-secret’,	‘another-session-secret’];
app.use(convert(session()));

Koa-generic-session	for	creating	session	at	login	and	registration,	Koa-convert	is	for
wrapper	around	the	session	and	app.keys	for	storing	this	as	cookie	in	browser	encoded
secretly.

require(‘./auth’);

With	this	above	line	we	are	getting	all	data	written	in	auth.js	file.	Next	we	are	initializing
and	creating	session	by	passing	passport	to	app	like	this

app.use(passport.initialize());
app.use(passport.session());

next	we	are	going	to	create	routes	for	login	to	get	and	post	data.	And	members	and	logout
routes	also

app.use(route.get(‘/login’,loginRoutes.showLogin));
app.use(route.get(‘/logout’,loginRoutes.logout));
app.use(route.get(‘/members’,membersRoutes.showMem));

This	is	the	get	method	for	/login	route	which	is	calling	other	method	showLogin	from	our
middleware	which	we	are	going	write	next.	Also	logout	from	loginRoutes	and	showMem
from	membersRoutes.

//	POST	/login
app.use(route.post(‘/login’,
				passport.authenticate(‘local’,	{
								successRedirect:	‘/members’,
								failureRedirect:	‘/login?err=local’
				})
));

This	is	the	post	method	which	going	to	get	all	form	data	and	passing	it	to	our	local
strategy	in	auth.js	file	which	I	have	already	explained.	And	if	the	result	come	out	as	true
then	it	will	create	session	for	user	and	redirect	to	‘/members’	route,	and	if	result	is	false
then	it	will	redirect	to	login	page	with	error.

app.use(route.get(‘/auth/google’,
				passport.authenticate(‘google’,{session:false,	scope:[‘email’,‘profile’],	accessType:
‘offline’,	approvalPrompt:	‘force’}
)));

Next	route	is	for	google	registration	/auth/google	this	will	send	request	to	google	for
profile	and	email	details	of	already	logged	in	google	user,	and	forward	it	to	our	auth.js
google	strategy	function,	and	then	it	sends	the	result	to	our	callback	route.

app.use(route.get(‘/auth/google/callback’,
																	passport.authenticate(‘google’,	{
								successRedirect:	‘/members’,
								failureRedirect:	‘/login?err=google’
																		})
));
	

Here	the	callback	route	will	verifies	the	result	if	true	then	creates	session	and	redirect	to
‘/members’	and	else	redirects	to	login	with	error,	because	our ‘/auth/google’ 	link	is	on
same	page.	User	can	either	use	login	form	or	google	signup	button	to	login,	because	we
are	checking	if	googleid	already	exist	then	it	forwards	the	user	data	to	create	login	session
in	our	auth.js	file.

Now	next	we	will	write	our	middleware	functions	for	‘/login’	route,	and	‘/members’		route
/logout	

Write	the	code	in

./routes/loginRoutes.js

var	db	=	require(“./../lib/db.js”);
	

//	to	show	our	login	page
module.exports.showLogin	=	async(ctx)	=>	{
				await		ctx.render(“login”);
};
	

//to	log	out
module.exports.logout	=	async(ctx)	=>	{
					ctx.logout();
				ctx.session	=	null;
					ctx.redirect(‘/’);
};

	

We	are	getting	db	object	from	our	db.js	file	from	lib	directory	where	we	have	created
connection	with	database	and	users	collection.

	

module.exports.showLogin	=	async(ctx)	=>	{

	

This	line	will	export	our	showLogin		async	function	which	is	accessible	in	our	app.js	file
by	creating	variable	with	require	keyword.

	

await	ctx.render(“login”);

	

This	will	render	our	html	page	in	asynchronies	manner	because	we	are	using	await	key
word.	Next	is	our	logout	function	by	which	we	logout	the	user	from	auth	and	empty	the
session	and	redirect	it	to	home	page.

	

Now	write	the	code	in

./routes/membersRoutes.js
var	db	=	require(“./../lib/db.js”);

var	user	=	null;

module.exports.showMem	=	async	(ctx)	=>	{
			//to	check	if	user	is	logged	in	
				if	(ctx.isAuthenticated())	{
								user	=	await	ctx.passport.user;
				}	else	{
									ctx.redirect(“/”);
				}
				await	ctx.render(“members”,	{	user:	JSON.stringify(user,	null,	2)});
};

	

this	is	membersRoute	module	where	we	are	creating	showMem	function,	where	first	we
verify	if	user	is	authenticated	if	user	is	logged	in	then	it	will	get	the	user	data	in	user
variable	which	we	have	already	declared	null	and	then	rendered	members	page	with	user.

await	ctx.render(“members”,	{	user:	JSON.stringify(user,	null,	2)});
	

before	running	your	project	don’t	forget	to	run	Mongodb,	run	project,	from	menu	bar
navigate	to	login	page	register	with	google	auth	button,	you	will	be	asked	to	login	to	your
google	account	after	login	you	will	get	the	page	where	you	have	to	allow	access	to	your
email	and	profile	details,	and	then	you	will	be	redirected	to	members	page	with	your	email
on	page.	If	you	don’t	see	anything	or	got	error	not	found,	internal	server	error..etc	.	go	to
your	terminal	you	will	get	error	details	there,	if	don’t	then	try	to	use	console.log();	in	your
code	and	this	will	show	what	data	you	are	getting.	If	registered	successfully	then	check
mongodb	for	database		loginReg	and	collection	users	check	if	data	is	inserted,	I	am	using
robomongo	for	mongodb	where	I	can	check	users	collection	easily.	Try	to	logout	and	login
using	username,	password	in	login	form,	by	default			we	are	using	password:’1234’	so	try
to	login	with	it	and	logout	again.

	

Now	next	we	will	learn	to	update	profile,	view	profile	and	delete	profile	functionality

	

For	that	we	have	to	create	new	routes	for	get	and	post	for	edit,	get	profile	and	delete

Create	./routes/editRoutes.js

./routes/editRoutes.js
var	db	=	require(“./../lib/db.js”);

module.exports.editUser	=	async	(ctx)	=>{
				if(ctx.isAuthenticated()){
												try	{
																var	user	=		ctx.passport.user;
																
														await	ctx.render(“edit”,user);
												}catch(ex){
																console.log(ex)												
												}
				}else{
								ctx.redirect(‘/’);
				}
};
	

//post	method	to	update	data	
module.exports.updateUser	=	async(ctx)=>{
				if(ctx.isAuthenticated()){
								var	id	=	ctx.passport.user._id;
								var	postedData	=ctx.request.body;

							//	console.log(postedData);
								var	userToUpdate	=	{
												name	:	postedData.name,
												gender:postedData.gender,
												bdate:postedData.bdate,
												password:postedData.password,
												about:postedData.about,
												updatedAt:new	Date
								}
								//console.log(userToUpdate);
								await	db.users.update({_id:id},{$set:userToUpdate});

								ctx.redirect(‘profile’);

				}else{
								ctx.redirect(‘/’);
				}
};
module.exports.delConfirm	=	async(ctx)=>{
				await	ctx.render(‘delConfirm’);
}
	

//to	delete	your	profile	from	database
module.exports.delUser	=	async(ctx)=>{
				if(ctx.isAuthenticated()){
								var	id	=	await	ctx.passport.user._id;

								db.users.remove({_id:id});
//this	will	clear	sessions	and	redirect	to	login	page
								ctx.logout();
								ctx.session	=	null;
								ctx.redirect(‘/login’);

				}else{
								ctx.render(‘/’);
				}
}

	

This	is	our	editRoute.js	where	first	we	are	getting	our	db	in	db	variable	then	we	create	our
get	edit	page	function,	where	we	first	verify	user	with	isAuthenticated()	if	user	is	loggd	in
then	we	get	his	data	from	session	and	pass	it	to	our	page	by	render

await	ctx.render(“edit”,user);

Like	this	we	can	access	logged	in	user	data	into	our	edit	form	which	we	will	create	in
edit.html	page.	Next	function	is	for	post	route	of	edit	form	where	we	get	all	posted	data
bay	form	in	to	our	middleware,	with	the	help	of	koa-bodyparser	which	we	have	already
declared	and	used	in	our	app	of	app.js	file.

var	postedData	=ctx.request.body;

This	is	how	we	get	the	data	from	form	to	the	postedData	variable,	only	logged	in	user	is
allowed	to	update	profile,	so	we	are	checking	isAuthenticated	then	getting	userid	in	to	id
variable	from	our	session

var	id	=	ctx.passport.user._id;
using	this	line	of	code.	Now	when	we	got	id	and	data	both	we	move	next	to	update	the
data	in	database

var	userToUpdate	=	{
												name	:	postedData.name,
												gender:postedData.gender,
												bdate:postedData.bdate,
												password:postedData.password,
												about:postedData.about,
												updatedAt:new	Date
								}

In	userToUpdate	variable	we	writing	the	data	in	which	we	are	going	to	write	in	mongo
update	query.	In	short	we	are	giving	functionality	to	users	to	update	their	profile

await	db.users.update({_id:id},{$set:userToUpdate});

By	this	command	we	are	matching	existing	user	id	with	the	database	and	updating	data
with	the	$set	key	word	by	this	only	that	field	will	be	updated	which	are	mentioned	in	the
query	and	remaining	fields	will	be	same.	After	that	redirected	to	the	profile	where	user	can
see	updated	data	and	full	profile.	

Now	./routes/profileRoutes.js

./routes/profileRoutes.js
var	db	=	require(“./../lib/db.js”);

module.exports.showProfile	=	async	(ctx)	=>{
				if(ctx.isAuthenticated()){

								try	{
												var	user	=		ctx.passport.user;

												//console.log(vm);
												await	ctx.render(“profile”,user);

								}catch(ex){
												console.log(ex)
								}
				}else{
								ctx.redirect(‘/’);
				}
};

	

This	is	membersRoutes.js	page	where	again	we	writing	a	get	route	function	of	profile
page.	Similar	to	edit	page	we	verifying	user	getting	data	from	session	passing	it	to
members.html	page	with	render

await	ctx.render(“profile”,user);

And	if	not	authenticated	then	redirected	to	home

Now	it’s	time	to	add	some	more	code	to	our	./app.js	file

Last	changes	in	this	file

./app.js

var	koa	=	require(“koa”);
var	app	=	new	koa();

var	route	=	require(“koa-route”);
var	serve	=	require(“koa-static”);
var	path	=	require(“path”);
var	co	=	require(“co”);
var	views=	require(“koa-views”);

app.use(views(‘views’,	{map:{html:‘swig’}}));

//	trust	proxy
app.proxy	=	true;

//	sessions
const	convert	=	require(‘koa-convert’);
const	session	=	require(‘koa-generic-session’);
app.keys	=	[‘your-session-secret’,	‘another-session-secret’];
app.use(convert(session()));
	

//	body	parser
const	bodyParser	=	require(‘koa-bodyparser’);
app.use(bodyParser());

app.use(serve(__dirname	+	“/public”));

//	authentication
require(‘./auth’);
var	passport	=	require(‘koa-passport’);
app.use(passport.initialize());
app.use(passport.session());

//routes*/
var	homeRoutes	=	require(“./routes/homeRoutes.js”);
var	loginRoutes	=	require(“./routes/loginRoutes.js”);
var	membersRoutes	=	require(“./routes/membersRoutes.js”);

var	editRoutes	=	require(“./routes/editRoutes.js”);
var	profileRoutes	=	require(“./routes/profileRoutes.js”);

app.use(route.get(“/”,	homeRoutes.showHome));

app.use(route.get(‘/login’,loginRoutes.showLogin));

app.use(route.get(‘/logout’,loginRoutes.logout));

app.use(route.get(‘/members’,membersRoutes.showMem));
app.use(route.get(‘/profile’,profileRoutes.showProfile));

app.use(route.get(‘/edit’,editRoutes.editUser));
app.use(route.post(‘/edit’,editRoutes.updateUser));
app.use(route.get(‘/delConfirm’,editRoutes.delConfirm));
app.use(route.get(‘/deluser’,editRoutes.delUser));

//	POST	/login
app.use(route.post(‘/login’,
				passport.authenticate(‘local’,	{
								successRedirect:	‘/members’,
								failureRedirect:	‘/login?err=local’
				})
));

app.use(route.get(‘/auth/google’,
				passport.authenticate(‘google’,{session:false,	scope:[‘email’,‘profile’],	accessType:
‘offline’,	approvalPrompt:	‘force’}
)));

app.use(route.get(‘/auth/google/callback’,
				passport.authenticate(‘google’,	{
								successRedirect:	‘/members’,
								failureRedirect:	‘/login?err=google’
				})
));

app.listen(3000);
console.log(‘Listening	on	http://localhost:3000‘);

	

This	is	probably	our	last	changes	in	app.js	file,	adding	some	routes	for	edit,	profile.

	

var	editRoutes	=	require(“./routes/editRoutes.js”);
var	profileRoutes	=	require(“./routes/profileRoutes.js”);

	

Creating	variables	for	editRoutes	and	profileRutes.

To	show	profile	page	get	method	is	called
app.use(route.get(‘/profile’,profileRoutes.showProfile));

http://localhost:3000

	

For	edit	get	and	post	routes	are	created
app.use(route.get(‘/edit’,editRoutes.editUser));
app.use(route.post(‘/edit’,editRoutes.updateUser));
	

And	for	delete	we	are	calling	two	routes	first	page	to	confirm	the	deletion	and	second	one
is	to	delete	user

app.use(route.get(‘/delConfirm’,editRoutes.delConfirm));
app.use(route.get(‘/deluser’,editRoutes.delUser));
	

and	now	finally	create	html	pages	for	edit	form	,	profile	view	and	delete	confirmation.

./views/edit.html
{%	extends	‘layout.html’	%}

{%	block	title	%}	New	Question	{%	endblock	%}

{%	block	content	%}
<div	class=“row”>
				<div	class=“col-lg-6	col-lg-offset-3”>
								<div	class=“jumbotron”>
												<h3>Update	your	Account</h3>
												<hr>
												<form	class=“form-horizontal”	name=“editForm”	action=”/edit”	method=“post”
role=“form”>
																<div	class=“form-group”>
																				<label	for=“username”	class=“col-lg-2	control-label”>Email	:</label>
																				<div	class=“col-lg-10”>
																								{{username}}
																								<!—<input	type=“email”	class=“form-control”	id=“email”	name=“email”
																																value=”{{email}}”>—>
																				</div>
																</div>
																<div	class=“form-group”>
																				<label	for=“name”	class=“col-lg-2	control-label”>Name	:</label>
																				<div	class=“col-lg-10”>

																								<input	type=“text”	class=“form-control”	id=“name”	name=“name”
																																value=”{{name}}”>
																				</div>
																</div>
																<div	class=“form-group”>
																				<label	for=“password”	class=“col-lg-2	control-label”>Password:</label>
																				<div	class=“col-lg-10”>
																								<input	type=“text”	class=“form-control”	id=“password”	name=“password”
value=”{{password}}”>
																				</div>
																</div>
																<div	class=“form-group”>
																				<label	class=“col-lg-2	control-label”>Gender</label>
																				<div	class=“col-lg-10”>
																								<div	class=“radio”>
																												<label>
																																<input	type=“radio”	name=“gender”	id=“genderM”	value=“male”
{%if	gender	===	‘male’%}checked=””{%endif%}>
																																<label	for=“genderM”>Male</label>
																												</label>

																								</div>
																								<div	class=“radio”>
																												<label>
																																<input	type=“radio”	name=“gender”	id=“genderF”	value=“female”
{%if	gender	===	‘female’%}checked=””{%endif%}>
																																<label	for=“genderF”>Female</label>
																												</label>
																								</div>
																				</div>
																</div>
																<div	class=“form-group”>
																				<label	for=“bdate”	class=“col-lg-2	control-label”>Birth	Date:</label>
																				<div	class=“col-lg-10”>
																								<input	type=“date”	class=“form-control”	id=“bdate”	name=“bdate”
value=”{{bdate}}”>
																				</div>
																</div>
																<div	class=“form-group”>
																				<label	for=“about”	class=“col-lg-2	control-label”>About	you:</label>
																				<div	class=“col-lg-10”>
																								<textarea	type=“text”	class=“form-control”	id=“about”	name=“about”	>
{{about}}</textarea>
																				</div>
																</div>
																<div	class=“form-group”>
																				<div	class=“col-lg-10	col-lg-offset-2”>
																								<input	type=“submit”	value=“Update”	class=“btn	btn-
primary”>																								
																				</div>
																</div>
												</form>
								</div>
			 </div>
</div>
{%	endblock	%}

	

This	forms	three	new	fields	to	our	user	data	which	we	have	inserted	while	registration
with	some	default	date	birthdate,	about	and	updatedDate	which	we	add	by	new	date().
And	also	password,	name	can	be	modified	by	user.	This	form	has	‘post’	method	to	‘/edit’
action.

	

Functionality	for	viewprofile,	add	code

./views/profile.html
{%	extends	‘layout.html’%}

{%	block	title	%}	{{name}}‘s	profile{%endblock%}

{%block	content%}
<div	class=“row”>
				<div	class=“col-lg-4”>
								
				</div>
				<div	class=“col-lg-8”>
								<h1>{{name}}</h1>
								<p>Birth	date	:{{bdate.toString()}}</p>
								<p>Gender	:	{{gender}}</p>
								<p>Join	date	:	{{createdAt.toString()}}</p>
								<p>About	me	:	{{about}}</p>
				</div>
</div>

{%endblock%}

	

	

Confirm	users	before	deleting,	add	this	code	to	confirm	delete

./views/delConfirm.html
{%	extends	‘layout.html’	%}

{%block	title%}delete	confirmation{%endblock%}

{%block	content%}
<div	class=“jumbotron”>
				<p>Are	you	shore?	You	want	to	delete	this	profile???	
</p>
</div>
{%endblock%}

	

	

Try	run	project	login	edit	profile	check	database	for	changes	delete	profile	this	links	we
have	already	given	in	members.html	page	navigate	from	there.	Again	found	error	try	to
solve	it	by	reading	terminal	window	using	console.log	and	you	will	find	easy	to	solve	it

This	is	the	basic	functionality	we	have	gave	you	to	start	your	journey	to	start	developing
application	in	node,	once	you	are	used	to	basic	functionality	you	can	later	on	develop
complex	applications

How	to	host	project	on	Windows	Sever	2008	R2
Requirement:

Dedicated	server	Windows	2008	R2
ISS	7.5
Node
IISNode
URL	rewrite	module	for	IIS

You	should	have	good	knowledge	of	iis	manager,	configuration	of	websites	and
security	permissions.

Node:

Download	and	install	latest	stable	version	from
https://nodejs.org/en/
This	will	install	node	to	c:/program	files/nodejs

	

IISNode

Download	and	install	IISNode	from	https://github.com/azure/iisnode/wiki/iisnode-
releases	according	to	os	32	or	64,	I	downloaded	iisnode	for	iis	7/8	(x64)	because
my	os	is	64	bit

This	will	download	in	c:/program	files/iisnode,	go	to	iis	manager	and	click	on	any
sites	and	check	modules	you	can	see	iisnode	is	added	to	it

URL	rewrite	module	for	IIS

Download	and	install	from	http://www.iis.net/downloads/microsoft/url-rewrite

Configure	application	for	hosting

Now	we	have	to	do	some	changes	to	our	application,	like	adding	web.confige	file,	setting
app.listen	port	and	some	changes	in	auth	code.

Ok	now	hosting	my	site	on	http://websolnetwork.com/	with	the	help	of	Remote	Desktop
connection	I	am	accessing	my	server.

Before	uploading	site	add	web.config	file	in	app	root	folder.

./web.config

<configuration>

<appSettings>

														<add	key=“BABEL_DISABLE_CACHE”	value=“true”	/>

</appSettings>

<system.webServer>

	

https://nodejs.org/en/
https://github.com/azure/iisnode/wiki/iisnode-releases
https://github.com/azure/iisnode/releases/download/v0.2.21/iisnode-full-v0.2.21-x64.msi
http://www.iis.net/downloads/microsoft/url-rewrite
http://websolnetwork.com/

														<!—	indicates	that	the	hello.js	file	is	a	node.js	application

to	be	handled	by	the	iisnode	module	—>

	

														<handlers>

																												<add	name=“iisnode”	path=“babel.app.js”	verb=”*”
modules=“iisnode”	/>

														</handlers>

														<rewrite>

																												<rules>

																																										<rule	name=“NodeInspector”	patternSyntax=“ECMAScript”
stopProcessing=“true”>

																																																								<match	url=”^babel.app.js\/debug[\/]?”	/>

																																										</rule>

																																										<rule	name=“LoginReg”>

																																																								<match	url=”/*”	/>

																																																								<action	type=“Rewrite”	url=“babel.app.js”	/>

																																										</rule>

																												</rules>

														</rewrite>

														<!—

the	iisnode	section	configures	the	behavior	of	the	node.js	IIS	module

setting	values	below	are	defaults

	

*	node_env	-	determines	the	environment	(production,	development,	staging,	…)	in
which

child	node	processes	run;	if	nonempty,	is	propagated	to	the	child	node	processes	as	their
NODE_ENV

environment	variable;	the	default	is	the	value	of	the	IIS	worker	process’es	NODE_ENV

environment	variable

	

*	nodeProcessCommandLine	-	command	line	starting	the	node	executable;	in	shared

hosting	environments	this	setting	would	typically	be	locked	at	the	machine	scope.

	

*	interceptor	-	fully	qualified	file	name	of	a	node.js	application	that	will	run	instead	of
an	actual	application

the	request	targets;	the	fully	qualified	file	name	of	the	actual	application	file	is	provided
as	the	first	parameter

to	the	interceptor	application;	default	interceptor	supports	iisnode	logging

	

*	nodeProcessCountPerApplication	-	number	of	node.exe	processes	that	IIS	will	start
per	application;

setting	this	value	to	0	results	in	creating	one	node.exe	process	per	each	processor	on	the
machine

	

*	maxConcurrentRequestsPerProcess	-	maximum	number	of	reqeusts	one	node	process
can

handle	at	a	time

	

*	maxNamedPipeConnectionRetry	-	number	of	times	IIS	will	retry	to	establish	a	named
pipe	connection	with	a

node	process	in	order	to	send	a	new	HTTP	request

	

*	namedPipeConnectionRetryDelay	-	delay	in	milliseconds	between	connection	retries

	

*	maxNamedPipeConnectionPoolSize	-	maximum	number	of	named	pipe	connections
that	will	be	kept	in	a	connection	pool;

connection	pooling	helps	improve	the	performance	of	applications	that	process	a	large
number	of	short	lived	HTTP	requests

	

*	maxNamedPipePooledConnectionAge	-	age	of	a	pooled	connection	in	milliseconds
after	which	the	connection	is	not	reused	for

subsequent	requests

	

*	asyncCompletionThreadCount	-	size	of	the	IO	thread	pool	maintained	by	the	IIS
module	to	process	asynchronous	IO;	setting	it

to	0	(default)	results	in	creating	one	thread	per	each	processor	on	the	machine

	

*	initialRequestBufferSize	-	initial	size	in	bytes	of	a	memory	buffer	allocated	for	a	new
HTTP	request

	

*	maxRequestBufferSize	-	maximum	size	in	bytes	of	a	memory	buffer	allocated	per
request;	this	is	a	hard	limit	of

the	serialized	form	of	HTTP	request	or	response	headers	block

	

*	watchedFiles	-	semi-colon	separated	list	of	files	that	will	be	watched	for	changes;	a
change	to	a	file	causes	the	application	to	recycle;

each	entry	consists	of	an	optional	directory	name	plus	required	file	name	which	are
relative	to	the	directory	where	the	main	application	entry	point

is	located;	wild	cards	are	allowed	in	the	file	name	portion	only;	for	example:
“*.js;node_modules\foo\lib\options.json;app_data*.config.json”

	

*	uncFileChangesPollingInterval	-	applications	are	recycled	when	the	underlying	*.js
file	is	modified;	if	the	file	resides

on	a	UNC	share,	the	only	reliable	way	to	detect	such	modifications	is	to	periodically
poll	for	them;	this	setting

controls	the	polling	interval

	

*	gracefulShutdownTimeout	-	when	a	node.js	file	is	modified,	all	node	processes
handling	running	this	application	are	recycled;

this	setting	controls	the	time	(in	milliseconds)	given	for	currently	active	requests	to
gracefully	finish	before	the

process	is	terminated;	during	this	time,	all	new	requests	are	already	dispatched	to	a	new
node	process	based	on	the	fresh	version

of	the	application

	

*	loggingEnabled	-	controls	whether	stdout	and	stderr	streams	from	node	processes	are
captured	and	made	available	over	HTTP

	

*	logDirectory	-	directory	name	relative	to	the	main	application	file	that	will	store	files
with	stdout	and	stderr	captures;

individual	log	file	names	have	unique	file	names;	log	files	are	created	lazily	(i.e.	when
the	process	actually	writes	something

to	stdout	or	stderr);	an	HTML	index	of	all	log	files	is	also	maintained	as	index.html	in
that	directory;

by	default,	if	your	application	is	at	http://foo.com/bar.js,	logs	will	be	accessible	at
http://foo.com/iisnode;

SECURITY	NOTE:	if	log	files	contain	sensitive	information,	this	setting	should	be
modified	to	contain	enough	entropy	to	be	considered

cryptographically	secure;	in	most	situations,	a	GUID	is	sufficient

	

*	debuggingEnabled	-	controls	whether	the	built-in	debugger	is	available

	

*	debuggerPortRange	-	range	of	TCP	ports	that	can	be	used	for	communication	between
the	node-inspector	debugger	and	the	debugee;	iisnode

will	round	robin	through	this	port	range	for	subsequent	debugging	sessions	and	pick	the
next	available	(free)	port	to	use	from	the	range

	

*	debuggerPathSegment	-	URL	path	segment	used	to	access	the	built-in	node-inspector
debugger;	given	a	node.js	application	at

http://foo.com/bar/baz.js,	the	debugger	can	be	accessed	at
http://foo.com/bar/baz.js/{debuggerPathSegment},	by	default

http://foo.com/bar/baz.js/debug

	

*	debugHeaderEnabled	-	boolean	indicating	whether	iisnode	should	attach	the	iisnode-
debug	HTTP	response	header	with

diagnostics	information	to	all	responses

	

*	maxLogFileSizeInKB	-	maximum	size	of	a	single	log	file	in	KB;	once	a	log	file
exceeds	this	limit	a	new	log	file	is	created

	

*	maxTotalLogFileSizeInKB	-	maximum	total	size	of	all	log	files	in	the	logDirectory;
once	exceeded,	old	log	files	are	removed

	

*	maxLogFiles	-	maximum	number	of	log	files	in	the	logDirectory;	once	exceeded,	old
log	files	are	removed

	

*	devErrorsEnabled	-	controls	how	much	information	is	sent	back	in	the	HTTP
response	to	the	browser	when	an	error	occurrs	in	iisnode;

when	true,	error	conditions	in	iisnode	result	in	HTTP	200	response	with	the	body
containing	error	details;	when	false,

iisnode	will	return	generic	HTTP	5xx	responses

	

*	flushResponse	-	controls	whether	each	HTTP	response	body	chunk	is	immediately
flushed	by	iisnode;	flushing	each	body	chunk	incurs

CPU	cost	but	may	improve	latency	in	streaming	scenarios

	

*	enableXFF	-	controls	whether	iisnode	adds	or	modifies	the	X-Forwarded-For	request
HTTP	header	with	the	IP	address	of	the	remote	host

	

*	promoteServerVars	-	comma	delimited	list	of	IIS	server	variables	that	will	be
propagated	to	the	node.exe	process	in	the	form	of

x-iisnode-<server_variable_name>	HTTP	request	headers;	for	a	list	of	IIS	server
variables	available	see

http://msdn.microsoft.com/en-us/library/ms524602(v=vs.90).aspx;	for	example
“AUTH_USER,AUTH_TYPE”

	

*	configOverrides	-	optional	file	name	containing	overrides	of	configuration	settings	of
the	iisnode	section	of	web.config;

the	format	of	the	file	is	a	small	subset	of	YAML:	each	setting	is	represented	as	a	<key>:
<value>	on	a	separate	line

and	comments	start	with	#	until	the	end	of	the	line,	e.g.

#	This	is	a	sample	iisnode.yml	file

nodeProcessCountPerApplication:	2

maxRequestBufferSize:	8192	#	increasing	from	the	default

#	maxConcurrentRequestsPerProcess:	512	-	commented	out	setting

	

	

	

														<iisnode

																node_env=”%node_env%”

																nodeProcessCountPerApplication=“1”

																maxConcurrentRequestsPerProcess=“1024”

																maxNamedPipeConnectionRetry=“100”

																namedPipeConnectionRetryDelay=“250”

																maxNamedPipeConnectionPoolSize=“512”

																maxNamedPipePooledConnectionAge=“30000”

																asyncCompletionThreadCount=“0”

																initialRequestBufferSize=“4096”

																maxRequestBufferSize=“65536”

																watchedFiles=”*.js;iisnode.yml”

																uncFileChangesPollingInterval=“5000”

																gracefulShutdownTimeout=“60000”

																loggingEnabled=“true”

																logDirectory=“iisnode”

																debuggingEnabled=“true”

																debugHeaderEnabled=“false”

																debuggerPortRange=“5058-6058”

																debuggerPathSegment=“debug”

																maxLogFileSizeInKB=“128”

																maxTotalLogFileSizeInKB=“1024”

																maxLogFiles=“20”

																devErrorsEnabled=“true”

																flushResponse=“false”

																enableXFF=“false”

																promoteServerVars=””

																configOverrides=“iisnode.yml”

/>

—>

														<!—				

	

One	more	setting	that	can	be	modified	is	the	path	to	the	node.exe	executable	and	the
interceptor:

<iisnode
nodeProcessCommandLine=”"%programfiles%\nodejs\node.exe"”	/>	—>

<iisnode

nodeProcessCommandLine=”"%programfiles%\nodejs\node.exe"”

interceptor=”"%programfiles%\iisnode\interceptor.js"”

		loggingEnabled=“true”

																logDirectory=“iisnode”

		debuggerExtensionDll=“iisnode-inspector.dll”

																debuggingEnabled=“true”

																debugHeaderEnabled=“false”

																debuggerPortRange=“5058-6058”

																debuggerPathSegment=“debug”

																maxLogFileSizeInKB=“128”

																maxTotalLogFileSizeInKB=“1024”

																maxLogFiles=“20”

		/>

	

	

	

</system.webServer>

</configuration>

	

Ok	now	some	explanation	of	we	are	doing	in	web.confige	file

<handlers>

<add	name=“iisnode”	path=“babel.app.js”	verb=”*”	modules=“iisnode”	/>

</handlers>

	

This	where	we	show	the	path=”babel.app.js”	this	our	main	application	file	to	start
application,	remember	we	are	running	our	app	with	babel.

<rewrite>

<rules>

														<rule	name=“NodeInspector”	patternSyntax=“ECMAScript”
stopProcessing=“true”>

														<match	url=”^babel.app.js\/debug[\/]?”	/>

														</rule>

														<rule	name=“LoginReg”>

																												<match	url=”/*”	/>

																												<action	type=“Rewrite”	url=“babel.app.js”	/>

														</rule>

</rules>

</rewrite>

This	is	our	url	rewrite	code	for	that	you	have	to	install	URL	rewrite	module	for	IIS	on
your	server	first,	by	this	code	when	you	type	http://websitname.com	then	it	will
automatically	call	babel.app.js	file.	If	this	code	is	note	in	your	config	file	then	you	have	to
type	http://websitname.com/babel.app.js	and	then	it	will	run	your	app.

<iisnode	nodeProcessCommandLine=”"%programfiles%\nodejs\node.exe"”
/>	—>

<iisnode

nodeProcessCommandLine=”"%programfiles%\nodejs\node.exe"”

interceptor=”"%programfiles%\iisnode\interceptor.js"”

loggingEnabled=“true”

logDirectory=“iisnode”

debuggerExtensionDll=“iisnode-inspector.dll”

debuggingEnabled=“true”

debugHeaderEnabled=“false”

debuggerPortRange=“5058-6058”

debuggerPathSegment=“debug”

maxLogFileSizeInKB=“128”

maxTotalLogFileSizeInKB=“1024”

maxLogFiles=“20”

		/>

Ok	with	this	line	of	code	we	are	showing	our	node.exe	file	path	and	issnode	file	path	to
our	application.	Logging	enabled	true	this	will	create	a	iisnode	directory	in	application
folder	and	save	log	files	in	it.	You	can	access	it	by	websitname.com/iisnode/index.html.

Ok	now	before	uploading	we	have	to	remove	node_modules	folder	from	application
folder,	or	else	it	will	take	forever	to	upload.	Don’t	delete	it	directly	delete	it	from
command-prompt

Open	command-prompt	goto	application	directory	and	type	following	command

>rmdir	node_modules/s

/?	Will	show	you	options	for	delete

After	this	some	changes	in	app.js	file

./app.js

//this	will	listen	your	app	on	http://localhost:3000

http://websitname.com
http://websitname.com/babel.app.js

app.listen(3000);

console.log(‘App	listening	on	port	3000’);

	

Remember	previously	we	have	wrote	this	code	in	our	app.js	file	now	change	it	to	this

var	port	=	process.env.PORT	||	3000;

app.listen(port);

console.log(“App	is	listening	on	port	”	+	port);

	

process.env.PORT	this	will	get	the	running	port	which	port	80	or	else	we	are	running	it
locally	then	it	will	take	port	3000.

Ok	remember	console	Google	API	console	we	have	created	for	localhost:3000	now	create
it	for	your	website.	Change	it	in	./auth.js	file.	Also	change	callback	url	to
http://websitname.com/auth/google/callback.

Ok	now	upload	your	app	on	your	server	using	ftp.
Now	on	server	create	a	separate	folder	in	c:/	with	name	test	copy	paste	your	app	in
it.
Go	to	command	prompt	with	administrator	permission	go	to	your	c:/test/application
directory	and	type
>npm	install
This	will	install	all	the	dependencies	in	your	application	directory	under
node_modules	folder.
Now	go	to	your	IIS	Manager.
At	left	pane	there	is	list	of	sites	under	site	folder,	if	you	have	already	created	web
site	then	you	will	find	your	site	there,	else	create	it,	right	click	on	site	folder	add
website.

My	site	is	already	created	using	website	panel.
Now	click	on	site	name	go	to	basic	settings,

http://websitname.com/auth/google/callback

change	application	pool	to	DefaultAppPool,	

	

change	physical	path	to	you	application	c:/test/applicationDirectory

click	test	settings	this	will	show	warning	cannot	verify	access	to	path
c:/test/applicationdirectory	but	neglect	it	it’s	just	a	warning

Ok	now	close	click	ok
Right	click	on	site	name	click	edit	permission	go	to	security,	see	under	groups	or
user	names:	there	is	a	list	of	users	see	if	there	is	a	DefaultAppPool,

if	not	then	click	edit	then	add,	under	enter	object	name	to	select,	type
IIS	AppPool\DefaultAppPool

Click	on	check	names,	if	you	haven’t	done	any	speling	mistake	then	it	will	show
the	DefaultAppPool	in	that	box	and	then	click	ok

Now	click	apply,	it	will	take	some	time	to	assign	permission	to	your	node_modules
folder.
After	it	click	ok	may	be	two	times.
Now	you	have	to	assign	some	permission	to	iisnode,	node.exe	in	c:/programfile	to

access	by	IIS_USRS.	

Same	procedure	right	click	security,	check	for	IIS_USRS	else,	edit,	add	user	type
IIS_USRS	check	names	and	click	ok
Remember	no	spelling	mistakes.
Ok	done	now	got	to	browser	and	type	your	sitename

Errors	I	got	when	hosting	and	how	I	fixed	it
Permission	errors	404	not	found	error,	check	for	permissions	you	have	assign	to
node.exe	and	iisnode-inspector.dll
Check	all	packages	are	installed	properly	else	remove	node_modules	and	again
install	all	packages	using	administrator	command	prompt,	after	doing	this	again

assign	permissions	to	your	site	from	iis	manager
Check	permissions	for	DefaultAppPool	read/write	execute	are	assigned
You	may	found	error	IISNode	configuration	error
Go	to	appsite	iismanager	right	click	recycle	apppool

After	this	or	after	creating	changes	in	app	files	it	will	show	error	for	some	time,
because	it	recycles	the	apppool	after	changes	so	don’t	worry	it	will	be	resolved
after	some	time.	
This	will	solve	your	error

	

Errors	You	May	Face
	

While	create	this	project	I	came	across	many	errors,	because	there	are	no	proper	examples
available	on	the	internet,	hours	are	spent	fixing	the	bug,	you	may	get	small	patches	like
how	to	use	passport	for	login	registration	but	that	example	may	be	not	using	same
packages	like	us,	so	it	will	be	hard	to	understand	and	modify	according	to	your	packages,
again	you	have	to	search	for	v2	coding	where	you	are	using	async	await	but	there	are	very
few	examples	available,	you	will	get	v1	examples	more	for	koa.

While	using	async	await	you	should	be	careful,	don’t	use	too	many	await	it	will	throw
error,	you	should	know	where	to	use	await	and	where	not.	While	routing	don’t	redirect	too
much	it	will	throw	to-many-redirects	error	on	browser	and	you	have	to	clear	your	browser
cache,	remove	redirects	and	then	run	the	project.

If	you	are	used	to	generator	functions	then	try	to	use	co.

You	can	go	for	testing	using	mocha,	supertest,	you	should	simultaneously	run	test	project
you	will	find	easy	to	understand	your	project.	Use	try	catch	for	handling	errors,	in	db
queries	use	function(err,data)	in	callback	so	you	will	know	you	are	getting	data	or	not.	Be
proper	with	declarations,	names	and	be	sure	all	packages	are	installed.	Check	for	terminal
every	time	you	run	your	project	and	while	rendering	pages	on	browser.

	

Downloading	the	Entire	Project	and	using	it
	

You	can	download	the	entire	project	from	here
http://www.aminnagpure.com/p/nodejs-with-koa2-source-code.html

	

	

And	after	that	from	command	prompt,	get	to	that	folder	and

Type	“npm	install”	without	quotes

That	will	install	all	the	packages	mentioned	in	package.json,	and	your	application	is	ready
to	go

Best	of	luck	in	your	journey	as	a	node	programmer

You	can	modify	the	program	and	add	features	the	way	you	want

If	you	have	any	problems	with	the	code,	you	can	comment	on	that	web	page

http://www.aminnagpure.com/p/nodejs-with-koa2-source-code.html

About	Us
	

Amin	B	Nagpure

Programmer,	Web	Developer

You	can	follow	me	on
http://www.aminnagpure.com

http://www.aminnagpure.com

